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We show that the inverse correlation length m(fl) (= mass of the fundamental 
particle of the associated lattice quantum field theory) of the spin-spin correla- 
tion function (SxSy), x, y E Z a, of the d-dimensional Ising model admits the 
representation 

m ( f l )  = - I n  fl + r ( f l )  

for small inverse temperatures fl > O. r(fi) is a d-dependent function, analytic at 
fi = O. cn, the nth fl = 0 Taylor series coefficient of r( f l )  can be computed 
explicitly from the Z d limit of a finite number of finite lattice A spin-spin 
correlation functions (SoSx) A for a finite number of x = (Xl ,X 2 . . . . .  xd), Ixl 
= ~,di=ilxil < R(n), where R(n) increases with n. Furthermore, there exists a 
f l ' >  O, such that for each fl ~ (0, f l ' )m( f l )  is analytic. Similar results are also 
obtained for the dispersion curve ~(p), ~0(p) _-> o~(0) = m, p E ( -  ~, ~]d- 1, of the 
fundamental particle of the associated lattice quantum field theory. 

KEY WORDS: Ising model; correlation length; correlation function; ex- 
pansion for correlation length; analyticity of correlation length; high- 
temperature Ising model. 

1, I N T R O D U C T I O N  

In  this p a p e r  we give ana ly t i c i t y  p rope r t i e s  a n d  a c o n v e r g e n t  e x p a n s i o n  for  

the  inverse  c o r r e l a t i o n  l eng th  m ( f l )  of  the  c lass ica l  spin  _+ 1 neares t -  

n e i g h b o r  f e r r o m a g n e t i c  I s ing  m o d e l  on  a d - d i m e n s i o n a l  Z a la t t ice  in the  

r e g i o n  of  smal l  I BI, B the  inve r se  t e m p e r a t u r e .  E q u i v a l e n t l y  m ( f l )  is the  
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mass of the fundamental particle of the associated Ising lattice quantum 
field theory. (2) For fl > O, re(B) is defined by 

- 1 ln~soSx=(x~,o) ) m ( f l ) =  lim 
xl--~ oo X 1 

(SxSy) =--- G(x; y, fl) = limA,z~(GA(X; y, fl) -- (SxSy)A), X, y ~ Z d where 
GA(X; y, 13) is the spin-spin correlation function (cf) in the Gibbs ensemble 
with Boltzmann factor exp[(/3/2)~,,x,y~ASxSy ] for the finite lattice A c Z d 
at inverse temperature fl > 0 and we denote points x ~ A by x = (xi,x2, 

, xa) = (x l, x) and I x[ a d . . . . .  E/=21x, I. 2/=,lx/I ,  Ixl 
It is a consequence of high-temperature statistical mechanics expan- 

sions, say, the polymer expansion in Ref. 3, that the n-pt. cf are analytic for 
small I/3[ and translation invariant so that G(x; y , /3)  = G(x - y ,  B). By 
Griffiths inequalities and iteration methods (4) one can obtain upper and 
lower bounds on (SoSx) which imply the asymptotic result limr 
- In/31--- 1. 

However, the analyticity properties of m(/3) are not clear Spectral 
analysis methods of quantum field theory have been used in Ref. 1 to 
obtain an asymptotic expansion of m(/3) to order/3 and to show that there 
is an upper mass gap and isolated dispersion curve 

lim - l ln(~.eip'X(s0S(x,,x))~ >_--~0(0)= m s  
xl--~ oo x I \ 

where p E ( -~r ,  Tr) a-I  is the momentum. Also, graphical methods were 
employed by Ref. 5 for real fl to obtain the asymptotic formula of Ref. 1. 
Extrapolations in/3 of similar expansions have been used in lattice gauge 
theory in Ref. 6 as an alternative to Monte Carlo methods to detect and 
locate critical points, for example, where m(f l )  = 0. 

From an inspection of explicit formulas for m(/3) for d =  1 and 2 
(in d = 1 (SoSx,) = (tanh fi)~', m( f i )  = - l n t a n h / 3 )  we see that m(f i )  = 
- I n  fi + r(/3) where r ( f i )  is a dimension-dependent function analytic at 
fi = 0. We note that (s0s~) is an entire function of 13 but the radius of 
convergence of the /3 = 0 Taylor series of r(/3) is 1/31 = 7r/2 in d =  1 
[r(/3) = - ln ( th /3 / /3 ) ] ;  however, for each/3 E (0, oe) m(f l )  is analytic. In 
this paper we show similar results in d dimensions, i.e., 

(1) m(/3) = - i n  fl + r(/3), B > 0 small, r(/3) analytic at/3 = 0, 
(2) there exists a / 3 '>  0 such that for each /3 ~(0 ,  fl') m( f l )  is 

analytic. 
Furthermore we show that 

(3) en = (1/n!)(dnr/dfi ')( /3 = 0), the nth fi = 0 Taylor series coeffi- 
cient of r(fl), can be computed explicitly from the Z a limit of a finite 
number of fl = 0 Taylor series coefficients of the finite lattice cf (s0G)A for 
a finite number of x, Ixl < R(n) where R(n) increases with n. 
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The second result is an immediate consequence of results of Ref. 1 and 
the analytic implicit function theorem(7'8); the first result also depends on 
many results of Ref 1. The method used here is that of quantum field 
theory; we obtain an implicit equation for m(fl)  as the zero Pl = im(fl), 
p =  0 [m( ,8 )>  0] of the Fourier transform F(pl,P) of the convolution 
inverse F(x, y) in 12(Z d) of G(x, y) where G(x, y) is interpreted as a matrix 
operator in 12(Za). For the relation of this zero to the previous definition 
and to the spectrum of the associated lattice quantum field theory see Refs. 
1 and 2. 

The organization of this paper is as follows: In Section 2 we collect 
some results from Ref. 1 needed to prove (1), give some extensions and 
prove (2). In Section 3 we prove (1); in Section 4 we prove (3). Section 5 is 
devoted to discussion and some open questions. In an appendix we give 
some estimates used in the proof of (1). 

2. fl ANALYTIClTY OF m(,8) IN (0, f l ' )  

We state some results from Ref. 1 in the form needed here. 67(p) or 
G(p, fl) = [1/(27r)d/2]~,x~z~eieXG(x, ,8), p E R d, px = ~,i=lpiXi,d denotes 
the Fourier transform. Similarly for l~(p), the Fourier transform of the 
convolution inverse F(x; f l )=F(y ; z ,  ,8), y - z  = x, of G in 12(zd). We 
denote by Ilall ([Irll) the 12(Z d) operator norm of G (F) considered as 
matrix operators. 

Lemma 2.1. (l) (a) There exist c, cl,c 2 > 0 and flo > 0 such that for 
all fl ~ C, 1/31 </30 G(x) is analytic in fi, IG(x)l _-<_ cllcBIlX,J+lxJ, FIGII < c2, 
a(xl, x) = G ( -  x 1 , x). 

(b) There exist /3l such that for all 13 E C, 1131 </31 67(Pl,P) is 
analytic in/3 a n d p  in I I m N  < - ln l /3 / f l11,  i - -  1,2 . . . . .  d. 

(c) For p real, ,8 ~ C, 1/31 small 67 has the ,8 = 0 Taylor expansion 

d 

d(/O, , 8 )=  1 "4- 2/3i=12 COS pi nt- f l2 fo l (1 -  t)~.~e ipx - ~ ,  82G (x, = Bt )  d t  

(d) For 13 real, lim/~r ( / 3 ) / -  in fl] = 1. 

Remark. See the Appendix for the proof of (a). 

Lemma 2.2. (1) (a) There exist c, Cl, ,85 > 0 such that for all fl ~ C, 
[fi[ < fis F (x ) i s  analytic in fl and Ir(x)l----cl/3//3~12~x,~+ex~, x 4(_+ 1,o); 
for x = (_  1,0) replace 2 by 1. Irl < Cl' r ~--(1 + Q ) - I =  ~_,,~=o(_l),Q, ' 
Q(x, y ) =  G(x; y ) -  6xy, is convergent in operator norm. Also F(xl ,x  ) = 

r ( -  xl, x). 
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(b) There exist /36 > 0 sHen that for all fl E C, I fll < /36' ]~(P) iS 
analytic in lira pll < -21h i  fl//361, Ilmpel < -lnl/3//361, i =  2 . . . .  , d. 

(c) (~(p) l~(p) = 1 holds in the region of analyticity of G(p). 
(d) For p real, 13 ~ C, {/31 small, F(p) has the fl = 0 Taylor expansion 

d 
~1(1 - flt) dt F(p)  1 -- 2/3 ~22 COS/)i-]- /32 .x 0 21~" 

i=1 JO t) " - ~  (19 , ~ -~- 

Remarks. (1) Note the faster falloff of F(x) in Ixll and consequent 
larger Pl analyticity region of I~(p) as compared to that of G(x) and G(p). 
For x4:(_+_l,0) the 2 in (a) can be replaced by 3 as shown in the 
Appendix. In (b) - 2  In can be replaced by - 3  In. 

(2) The constant and linear term of the Taylor expansion for F(p) are 
determined from Lemmas 2.1c and 2.2c. 

l .emma 2.3. (1'2) For fi > 0 and small and for each p E ( -  7r, ~r] d- 1 
(a) there exists a dispersion curve w(p), real analytic in p, defined by 
l~(pl = ion(p), p ) =  0, ~0(p)> 0. Pl = i~(P) is the only zero of ]~(Pl,P) in 
0 < I m p 1 - 2 1 n l / 3 / / 3 6 1 ,  tPe] <~r, i = 2 , 3  . . . . .  d, and is simple. Further- 
more e(p) >_- ~(0) = m and lim~,;0(~(p)/m) = 1 uniformly in p ~ ( -  ~r, 
cr]d-l; (b) there exists a Z'(p) > 0, real analytic in p, such that (OF/Opl)(Pl 
= iw(p),  p) = Z '  (p) > 0. 

We have the following: 

Theorem 2. There exists a fl' > 0 such that for each fi ~ (0,/3') 
m (fl)  is analytic. 

Proof. With p fixed F(pl,P, fl) is jointly analytic in Pl and fl for 
fl E (0, fi'), Pl = ion(p) by Lemma 2.2b. From Lemma 2.3b (OF/~P')(Pl 
= iw(p), p,/3) = Z'(p) > 0, so by the analytic implicit function theorem ~7'8) 
o~(p) is analytic in ft. �9 

In the next section we will need to control the remainder term of ]~(p) 
in Lemma 2.2d. Define 

1 /3m ~rnF (X, /3 = 0) 
rs(x, fi) = r(x,/3) - E m! oflm 

m=0 

=/32f01(1 - ~)~--" a2r (x, ~ =/3t)dt 

and for n = 0, 1 . . . .  Fs(n,/3) -- ~]xF~(xl = n,x,/3). We have the follow- 
ing: 

Lemma 2.4. There exist c, c 3, c4 and /3 7 > 0 such that for all 
113[ </37, (a) [F~(x,/3)I <= c31/312, (b) Fs(n, /3)/ /3" is analytic, [F~(n,/3)1 

c4]cfl[ 2n for n 4: 0, [L~0,/3)1 =< c41 fl[2. 
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Remark. For x = (___ 1,0), WAx,/3)1---- cl/313 holds. For n ~ O, 2 can 
be replaced by 3 in (b). 

Proof. (a) Follows from Lemma 2.2a and a Cauchy estimate on 
(02F/a~2)(x, ~ = fit). (b)From Lemma 2.2a for x such that 21x l + Ixl --> 2, 
x v ~ (___ 1,0), F , (x , /3 )  = F(x, /3) ,  [Fs(x,/3)1 --< cl/3//3s121x'l+lxl and using (a) 
for the other x the result follows on summing these bounds over x with 
X l ~-- r l .  [ ]  

3. A N A L Y T I C I T Y  P R O P E R T I E S  OF m(fi) AT fi = 0 

We assume p = 0 throughout and write l~(p~, fl) for la(pl, p = 0, fi). 
From Lemma 2.2d, Pl real, 1/31 small, 

I~(pl, f i ) = 1 - 2 f i c o s  p i -  2 f l ( d - 1 )  + ~'eie'Xl[ k ~-~ Fs(x' f l ) ]  
Xl J 

and by the estimates of Lemma 2.4 the right side provides an analytic 
extension in Pl to IImpll < -21nlcfi l ,  the xl ,x  series converging abso- 
lutely. As F (x l , x  ) = F ( - x l , x  ) we can write 

I ~ ( p l  , / 3 )  ---- 1 - /3(e -ip' q- e ip') - -  2 f i ( d -  1) + F,(O,/3) 

+ k F,(n, fl)(e ie'' + e -ie'n ) 
n = l  

Considering the asymptotic form of m, i.e., m(/3) ----- - in/3, we see that 
e -ip' is not well behaved at Pl = im(/3) for small fl which motivates the 
introduction of the auxiliary complex variable v and function H(v, /3) such 
that H(v = / 3 e  - ip '  - 1,/3) = -F(Pl ,  /3) where 

/32 
H ( v ,  /3) = v + + 2/3(d  - 1) - r A 0 , / 3 )  

[(l+v)n/3 n ] +  
k F, (n , /3)  fi-------7~ (1 + v) ~ 

n = l  

The domain of H will be specified below and we will show that indeed H is 
a nice function to which the analytic implicit function theorem can be 
applied. 

Lemma 3.1. For all /3 ~ C, I fil sufficiently small, (a) H(v,/3) ex- 
tends to a function jointly analytic in a region R which contains a product 
of open disks Dv, DI~ centered at v = 0, /3 = 0, respectively. The infinite 
series converge uniformly and absolutely in R. 

(b) H(v = 0, /3 = 0) = 0 and (OH/Ov)(v, /3) v a 0 in R. 
(c) There exist complex neighborhoods N B of/3 = 0, N~ of v = 0 and 

a unique analytic function v(fl), v(0) = 0, such that H(v(fl),/3) = 0 in N B. 
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Furthermore v(fi)  admits the explicit integral representation 

1 ~ w(OI4/Ow)(w, B) 

where C is the positively oriented contour [w I = p, p sufficiently small. 

We defer the proof of Lemma 3.1 to the end of this section and now 
give our main result concerning m(fi).  

Theorem 3. For all/3 real,/3 E (0,/3"), /3" sufficiently small m(fl) 
= - l n / 3  + r(/3), r(/3) = ln(1 + v(/3)). Let N O be a sufficiently small com- 
plex neighborhood of/3 = 0. Then r(fi) provides an analytic continuation 
of m(/3) - ( - l n / 3 )  to No; of m(/3) to N o with the negative real /3 axis 
deleted. 

Remark. Similar results hold for the dispersion curve ~(p) by not 
setting p = 0 in I~(pl, p,/3). 

Proof. By Lemma 2.3a for/3 > 0 and sufficiently small there is only 
one zero of F(p 1, fi) in 0 <  Imp1 < -21n lc /3  [ and it is at Pl = im(fi), 
0 <  m ( / 3 ) < - ( 1  + r l, ~ > 0 .  For ~ sufficiently small the zero of 
H(v(/3), fl) is in the analyticity region of I" as v(fl) = 0(/3) so the zero of 
H is Pl = im(/3). Thus for fi real,/3 E (0, 13"), fl" sufficiently small, 

e m(B) ----- (1//3)[1 + v(/3)]  

or m(/3) = - I n / 3  + ln[1 + v(/3)]. [] 

Proof of Lemma 3.1. (a) For 1/31 small and Iv I < 1 each term of 
H(v,/3) is analytic using Lemma 2.4b. Again, using Lemma 2.4b the 
infinite series in H(v,/3) converge uniformly in /3,v, [/31, ]vl small by the 
ratio test. 

(b) By Lemma 2.4b and (a) H(0, 0) = 0. We now examine 

~ H ( v , / 3 )  = 1 Fs(n, fi)  v),+ , + fi~ ~v ( l + v )  2 .=1 ( 1 +  

By Lemma 2.4b and using the ratio test lim~_~o(3H/av)(v, f l ) =  1 uni- 
formly for Ivl small. 

(c) follows from the analytic implicit function theorem. As H is 
analytic we are in the pleasant situation where the implicit function 
becomes explicit. (8) [] 

4. A CONVERGENT EXPANSION FOR m(/3) 

From Theorem 3 in Section 3 we see that Cm, the ruth fl = 0 Taylor 
series coefficient of r(fl) is determined from the /3 = 0  Taylor series 
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coefficients, aj, 0 = j  _-< m, of v(/3). We show below that a,  can be deter- 
mined explicity f rom the Z d limits of a finite number  of the computable  
fl = 0 Taylor  series coefficients of GA(0;x, / 3 ) =  (s0sx) A, 0 ,x  ~ AC Za, A 
finite, for all x, Ixl < R(n), where R(n) is an increasing funct ion of n. 

The  a,  = (1/n!)(d'v/d/3")(O) are given explicitly in terms of the 13 and 
v partial  derivatives of H(v,/3) at (v,/3) = (0, 0) (see Ref. 7). For  example, 
letting D~ =-- ~'/~/3", D~ m =-- om/Ov m, we have 

d r _  DeH(DvH)-I ,  
d/3 

du 
dB _ _ -  [DBDvHDBv+ D~H](DvH)- '  

+ DBH(DvH)-'[D2HDsv + DvD/~H ] 

The  general expression for dSv( fl)/dfi" involves a finite number  of fl and w 
derivatives of F(v, fi) which in turn depends on Fs(n, r)  and their fi 
derivatives up to a finite order.  Using the bounds on Fs(n, fi) f rom L emma  
2.4 it is seen that dSv/dflS(fi = 0) depends on only {F,(n, fl)},~=0 at fi = 0, 
m finite, and their fi = 0 derivatives up to a finite order. We now show that 
to find (dkF,/dfi'~)(n, fl = 0) it suffices to know a finite number  of the 
fi = 0 Taylor  series coefficients of G(x) for  a finite number  of x, Ix I < R 
depending on k and n, which can be computed  explicitly. Recall  F,(n,  fi) 
= E & ( x ,  = . ,  x, B), 

F,(n, x, fl ) =-- Y ( x  1 = n, x, /3 ) - Y(x, = n, x, fl = 0) 

- /3  + r(x~ = . ,  x,/3 = 0) 

and the N e u m a n n  series for  F(x;  y )  = F(x  - y), i.e., 

r (x ;  y)  = 8xy - Q(x;  y)  + E Q(x; z)Q(z; y) + . .  �9 
Z 

where Q(x; y) = G(x; y)(1 - 8xy), G(x; y) - G(x - y). Using the falloff of 
G(x) given by  Lemma  2.1 we see that only a finite number  of terms 
contr ibute  to (dkr,/dflk)(n,x, / 3 = 0 )  and only a finite number  of x 
contr ibute to (dkFs/d/3k)(n, x, /3 = 0). 

Using the analyticity in fi and the uniform convergence in fl of 
limA.rz~G,(0; y ,  /3) = G(0; y ,  /3) and its fi derivatives the fi = 0 derivatives 
of G(y,/3) are given by the Z d limits of fl = 0 derivatives of GA(0; y ,  fl), 
0, y ~ A c Zd.Finally,  if so desired, the fi = 0 derivatives of GA(0; y ,  /3) can 
be obta ined from the quotient  NA(fl)/DA(fl) ----- GA(0; y ,  /3) [DA(/3 ) is the 
parti t ion function], separately expanding NA(/3 ) and DA(fl)  [DA(/3 ) is 
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analytic at/3 = 0 for finite A] as can be done, for example, in establishing 
the/3 expansion of G(p,/3)  of Lemma 2.1c. 

5. CONCLUDING DISCUSSION 

Similar methods apply to other lattice models, such as the Ising with a 
magnetic field, the P(4') models, O) with or without a magnetic field, pure 
gauge and gauge-Higgs models. In the pure gauge model the order of the 
expansion of F is different. 

It would be interesting to develop a more direct method for obtaining 
the coefficients of the expansion of r(fl). For example, Cauchy major- 
ants (m) may be appropriate, The possible existence of other expansions 
which are simpler and more direct should also be investigated. 

We raise the question of low temperature analyticity. The "right" 
variable for analyticity should be an activity, like z - - e  -~ rather than 
y = 1//3 which gives an essential singularity at/3 = oe. This also suggests 
that an activity-type variable may be appropriate for analyticity or Borel 
summability in other problems such as the double well, (11) large distance 
interaction between atoms and expansions about mean field theory. (12'~3) 

A convergent perturbation theory for the mass of the time-continuum 
infinite space lattice Hamiltonian version of lattice spin, gauge, and gauge- 
matter lattice models has yet to be developed. 

APPENDIX 

Here we obtain some bounds on G and F in Lemmas 2.1 and 2.2 
extending these of Ref. 1. Many of the proofs are patterned after Ref. 14. It 
is convenient to introduce the complex coupling parameters {wp},z as 
follows: wp replaces/3 for all bonds B~ I, the bonds parallel to the 1-direction 
between the hyperplanes k 1 = p  and k 1 = p  + 1; z replaces t3 for all bonds 
B • the bonds perpendicular to the 1-direction. We write the complexified 
expectation in the finite volume A, for a local function F, as 

) (F)A = ZA12 -IAf ~] F(s)exp ~ wp ~, sxsy + z ~ SxSy 
(s) p = - n  x,yEBIL x , y ~ B  ~ 

where A extends from - n  to n in the 1-direction. By the polymer 
expansion of Ref. 3 (F)A is analytic for {Iwpl),lzl small, uniform in A. The 
bounds we will obtain are uniform in A and carry over to the A ~ Z a limit. 
We let GA(i, j, {wp}, z) and FA(i, j ,  { wp}, z) denote the 2-pt. function and its 
convolution inverse for volume A where GA, F A are also interpreted as 
convolution operators in/2(A). Let e I denote the unit vector in the positive 
1-direction. 
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Lemma A1. For {]we] }, ]z[ small, 

(a) GA(i, j ,  (we),z)lw=o = o, 

OmG A( i , j ,  {we},z)lz= o = O, (b) az " 

il =<P < J l  

0-------m<lj-i I 

605 

Corollary A1, For i~ =<p <j~,  

j l-1 

GA(i,J, {we},z) = l I  wezlJ-qFA(i,J, {We},Z) 
p=il 

F A analytic; for Jl = i, drop the w e factors and replace F A by K A, K a 
analytic. 

Proof of Lemma A1. (a) The numerator of GAIwp= 0 factorizes and 
the sum over { s} gives zero. 

(b) Expand the exponential of the numerator of G A. Each term must 
have bounds connecting i and j to give a nonzero contribution. In particu- 
lar there must be at least [j - il bonds from B l giving a factor of Z I j - i l .  [] 

Lemma A2. 
-<_ 2 and FA(i, j,  { w e }, z) is analytic. Furthermore, 

(a) rA(i, j ,  { wp},z)lw =0 = 0, 

~r~ {we)'z) w~=o (b) ~w e ( i , j ,  = 8i+e,.j ,Ai,,e, 

~r~ (We)'Z) (c) ~ ( i, j ,  { i, j ,  =0,  

we=0 

amr~ (we)'z) ~=0 (d) Oz m ( i , j ,  = O, 

For {]wql }, Izl small the operator F A = Ga-' exists, tlrAl[ 

il ----<P < j l  

il ~ f l  <J l  

il =<P < j l  

O ~ m < l j - i l  

Corollary A3. 

H A analytic; 
analytic. 

F o r j  =/= i + el,j1 > i i 

jl--I 

FA(i,j, (wp),z)  = I-I wflzlJ-ilHA(i,J, {wp),z)  
p=i~ 

for Jl = il drop the wp factors and replace H A by L A, L A 
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Proof of  l .emma A2. Write GA(i , j)  = 80. + QA(i, j), QA(i, j) -- GA(i , 
j)(1 -- 8~). By a Cauchy estimate Corollary A1 implies the bound 

j | - -  1 

IG I = c l J - , / F I  IwpIl l Ij-ll 
p=ii 

and using the bound ]JAIl ~ (maxj~kAjkl)l/Z(maxk~jlAjkl) 1/2 for a matrix 
operator A : 12~ l 2 it follows that I QAI < (1/2) for ([wp[}, Izl sufficiently 
small. Thus the Neumann series for F A converges. 

(a) Lemma Ala  implies GAIwp_ o reduces the complementary sub- 
spaces 12(Ap~ ) and 12(Ap>) where Ap~-(Ae> ) = (k  E A [ k  1 = p } ( { k  ~ A Ik 1 
> p}) and the same is true for FA[w= 0. 

(b) From GAF A = 1, (O/3wp)(GAFA) = 0 we find 

3FA (i, j )  w~=o J) w~=0 3wp = ~ I'A(i'k) 0GA (k' l)FA(l '  
k, l  

By the reducing subspace property (rsp) of F A we can restrict the sum to 
k 1 _< p < l I . A short calculation shows that 

~}GA ' [ OWp ( F , S )  ~-- ~ m :Era1 =pGA(r, m)GA(m + e, ,s) ~ =o ' rl =<p < s, 

I~, =~ [0  otherwise ~=0 ,  

which when substituted in the above gives 

3FA ( i , j )  wp=0----- )FA(/ 'J) 3wp ~,l FA(i 'k)GA(k 'm)Ga(m + e, ,l 
m : m 1 =p  wp=O 

m;m I =p  

where we have extended the sum over all k, l by the rsp of F A. 
(c) Write 02FA/Owp2 = 1+ 2H, where I =----FA(O2GA/3wz)FA and 

H =--FA(3GA/3wp)FA(OGA/3Wp)F A. By expanding the numerator of G A in 
powers of wp we find 

32GA (r,s) = O, r 1 <=p < s 1 
3w2 ~=o 

which upon substituting in I at Wp = 0 gives 

3=G~ (t,J). 3=GA k I)FA(I, j)  

~, FA ~=o k,t w~=0 
( I'A ) = ~-]~ Fx(i' k) --~--w~ ( ' 
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By the rsp of F A the sum can be restricted to k I N p, Ii > p but then 
(02GA/OW]92)( k,/)] w -0 = 0 so the term I gives zero. 

�9 p -  

Consider the term I I  at w e = 0. We write 

H(i ' j ) lw'=~ = ~,k'y',l ~2 FA(i 'k) ~ OGA (k,k')FA(k',k'~, OGAowp ( k " l ) F A ( l ' J )  ~,=0 

Since i I _-<p < J l  the sum over k (l) can be restricted to k 1 =<p (l I > p), but 
then to get a nonzero contribution the sum over k '  ( k ' )  can be restricted to 

t tt .< k 1 > p (k 1 = p )  by the rsp of (OGA/Owo)Iw =0 in the proof of (b). Substitut- 
r p 

ing for (OGA/Owe)[wp=O and then extending the sums to all k, l by the rsp of 
F A we obtain 

II(i,j)lw=O 

k,,~c ik,, n~3 = • 2 6i,mGA(m + e, ,k ' )FA(k' ,  ) " a t  , J ,+e,,j 
k':k~ >p m,n: ,we=O 
k.:ki ,<p ml=nt=P 

By the rsp of Ga[w= 0 we can extend the sum over all k" to get 

"= E 6i,mGA(m + el ,k') 6k.,n6n+e, J = 0 
H ( i ' j ) l w ,  =~ k,;k~,l>Pmlm,n: 

=nl=p Lwe=0 

since n 1 = p, k '  1 > p. 
(d) Write 12(A) = ~)kl2(Ak) where k denotes {k ~ A lk  = (0,k)} and 

A k = (k  E A[ k = (kl ,k)}.  By Lemma A l b  alz=o reduces each 12(Ak) so 
that rlz= o does also. Using the Leibniz formula 

Dr r-- 1 OrFA D r - , G A  

0z, Oz r Oz r - s F ,  
s=O 

and an induction argument the result follows. 

Proof  o f  L e m m a  2. la. By the polymer expansion of Ref. 3 

lim GA(i, j ,  (Wq = fl ), z = fl)  = G ( i , j , B )  = G ( j -  i = x, ~)  
A-~ Z d 

uniformly for small I/3]; /? analyticity of G follows from analyticity of G a 
given in Corollary A1 setting { Wq = B }, z = ft. The bound on G follows 
from the same bound on G a which in turns follows from Corollary A 1 by a 
Cauchy estimate. 

Proof of Lemma 1.2a. It can be shown that  XAGAXA converges 
strongly to G in 12(Z a) where Xa is the operator of multiplication by the 
characteristic function of A. Using the Neumann  series for F A, XAFAXA 
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converges strongly to F. The bound on F follows from the same bound on 
F A which in turn follows from Corollary A3 by a Cauchy estimate. �9 

The bound on (O2F/O/32)(x---(+l,0),/3) follows from the same 
bound on (~2FA/~/32)(i, j ,  fi), j =  i +  e 1, i~ = p .  From Lemma A2a, b, 
suppressing the i, j ,  ( wq } q =/= p,  z arguments, 

- joW [ ' ow;,  

setting all (Wq),Z equal to/3 gives I'A(fl) = fi + 1(/3) where 

_ ( B d w ,  ('w~ 32FA 
I ( fl ) - jo e)  o ~---w~ 2 ( w;"  ( w;' = fl ) q~ e ' z = fl ) dwr 

' " O 3 F A  (W'", 2=/3) 
wp 

where we have used Lemma A.2c. From this representation l(fl)= 
fi3g(fl), g(fi) analytic at/3 = 0, and since 32FA/3/32 = ~2I/~fl2 the result 
follows. 

REFERENCES 

1. P. J. Paes-Leme, Ann. Phys. (N. Y.) 115:367-387 (1978). 
2. R. Schor, Commun. Math. Phys. 59:213 (1978). 
3. E. Seiler, Gauge theories as a problem of constructive quantum field theory and statistical 

mechanics (Lecture Notes in Physics No. 159. Springer, New York, 1982). 
4. B. Simon, Commun. Math. Phys. 77:111 (1980). 
5. B. Simon, Asymptotic behavior of 2-pt. function for ferromagnetic spin systems, Princeton 

preprint, 1980. 
6. G. Munster, Nucl. Phys. B190:439 (1981). 
7. J. Dieudonn~, Foundations of Modern Analysis (Academic Press, New York, 1969). 
8. E. Hille, Analytic Function Theory, Vols. I and II (Ginn and Co., Boston, 1962). 
9. J. Glimm and A. Jaffe, Quantum Physics (Springer, New York, 1981). 

10. E. Hille, Methods in Classical and Functional Analysis (Addison-Wesley, Reading, Massa- 
chusetts, 1972). 

11. E. Harrell, Commun. Math. Phys. 75:239 (1980). 
12. J. Glimm, A. Jaffe, and T. Spencer, Ann. Phys. (N.Y.), 610-669 (1976). 
13. J. Imbrie, Commun. Math. Phys. 82:261-344 (1981). 
14. R. Schor, Existence of glueballs in strongly coupled lattice gauge theories, Nucl. Phys. B. 

222:71 (1983). 


